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+4
(a) Split m into partial fractions. [3]
(b) Find the first four terms of the binomial expansion of (1+ 2x)%. [3]
(c) Solve the equation 4sinxcosx=1, where0 < x s = [4]

2x.

(d) Show that sin3x = sinx — sinx cos
Differentiate cos3x with respect to x.

Hence find f sin® xdx. [5]

In Fig. 2, OAB is a bent rod, with OA = 1 metre, AB = 2 metres and angle OAB = 120°. The bent
rod is in a vertical plane. It is free to rotate in this plane about the point O.

B
i v
2m
hAm
120°
Im A C
. 0
O E D
Fig. 2

OA makes an angle 6 with the horizontal, where —90° < 6 <90°. The vertical height BD of B
above the level of O is h metres. The horizontal through A meets BD at C.

(1) Show that angle BAC = @+ 60°, and show that s = sin 8 + 2 sin (6 + 60°). 3]
(i) Hence show that -h =2sin0++/3cos 0, and find the angle 0 for which h = 0. [6]

(iii) Express 2sinf + A3cos6 in the form R sin (6 + o). Hence or otherwise find the maximum
value of A, and find an angle @ for which 4 = 2.5. [6]
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3

3 (a) Find J-xex dx. Hence show that the solution of the differential equation

LU

e’ xe*,
dx

for which y =0 when x =0, is

y=x+In(1-x). [5]

(b) A curve is defined by the equation e* + ¢’ = 2.

(i) By differentiating implicitly, or otherwise, show that ng =—e*7. [2]

(i) Verify that
x=In(l +9), y=In(l-1)

are parametric equations for the curve. [2]

dy
(iii) Find a; in terms of ¢, and hence or otherwise find the exact coordinates (in terms

of logarithms) of the point on the curve where the gradient is —2. [6]

4  With respect to coordinate axes Oxyz, A is the point (3,0, 1), Bis (1,0, 3),Cis (3,2,3)and D is
2,-1,1).

(i) Show that triangle ABC is equilateral. [3]

—> - >
(ii) Show that the vector AD can be expressed as AAB + uAC, where A and u are constants to be
determined. What can you deduce about the points A, B, C and D? [5]

(iii) Verify that the vector n =i — j + k is perpendicular to the plane ABC. Hence or otherwise find
the cartesian equation of the plane ABC. [4]

(iv) Find the angle between the lines AB and DC. [3]
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Geodesic domes

Introduction

What do a football, a carbon 60 molecule and the Eden Project in Cornwall all have in common? Read
on....

A football

The most familiar of these objects is a football and the pattern shown in Fig. 1 is commonly used. It is
made up of regular hexagons and regular pentagons. How does it work?

Fig- 1 w
At every vertex, three shapes meet. Two of these are hexagons, with internal angles of 120°; the third
is a pentagon with internal angles 108°. The sides of the hexagons and the pentagon are all the same
length. Fig. 2 shows these three shapes meeting at a point.

When they are drawn like this on a plane surface, the sheet of paper, they do not join up. The sides OA
and OD do not lie alongside each other; instead there is a gap of 12°, the angle AOD.

By contrast, Fig. 3 shows three hexagons meeting exactly at a point, without a gap.

A

Fig. 2 Fig. 3
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If you were to cut out Fig.2 and fold along the lines OB and OC, where the shapes meet, you could then
make lines OA and OD lie alongside each other. Instead of a plane figure you would then have a
3-dimensional one, either concave or convex according to how you look at it. Fig. 2 is part of the net
for the football shape.

The same cannot be done with Fig. 3. It is a plane 2-dimensional figure and no folding along its edges
will make it 3-dimensional.

The Platonic solids

To understand the football better, it is helpful to start by thinking about regular polyhedra. (A
polyhedron is a solid shape; the plural of polyhedron is polyhedra.)

At each vertex of a polyhedron at least 3 plane faces meet.

In a regular polyhedron, each of the faces is a regular polygon and all of them are the same polygon.
So the football is not a regular polyhedron because some of its faces are hexagons and others are

pentagons.

What shapes are possible for the faces? It must be possible for 3 or more of them to fit together leaving
a gap. Fig.3 illustrates the fact that they cannot be hexagons. The internal angle of a regular hexagon is
120° and, since 3 x 120° = 360°, there is no gap where they meet and so it is impossible to fold them
into a 3-dimensional shape.

Regular polygons with more than 6 sides have internal angles greater than 120° and so when three or
more of them meet at a point there is an overlap rather than a gap. This is shown for the heptagons in
Fig. 4. They also cannot be the shapes of faces of a regular polyhedron. .

Fig. 4

Thus the only possible shapes for the faces of regular polyhedra are the regular pentagon, the square
and the equilateral triangle.

The internal angle of a regular pentagon is 108° and, since

3x108°<360° and 4 x 108° > 360°,
it is possible to have 3, but not 4 or more, regular pentagons meeting at a vertex.
Similarly it is possible to have 3 but not 4 squares meeting at a vertex.

In the case of equilateral triangles, 3, 4 and S are all possible but not 6 since 6 X 60° = 360°.
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There are thus just five possibilities. In fact, each of these does indeed give rise to a regular polyhedron,
as summarised in Table 5 and illustrated in Fig. 6. They are called the Platonic solids.

Number of | Shape of | Number of Name of Number of
sides of | each face faces regular faces
each face meeting at polyhedron
each vertex

5 Pentagon 3 Dodecahedron 12

4 Square 3 Cube 6

3 Triangle 3 Tetrahedron

3 Triangle 4 Octahedron 8

3 Triangle 5 Icosahedron 20

Table 5

>

>
=

Dodecahedron

. <7
<P &

Octahedron Icosahedron

Cube Tetrahedron
Fig. 6 “

Truncation

Because of symmetry, it is possible to draw spheres that pass through each of the vertices of these

polyhedra. The regular polyhedron that is “closest” to its surrounding sphere is the icosahedron; it has

the greatest number of faces.

By cutting off its vertices, you can make any of these polyhedra fit closer to a sphere. This process is
called truncation; it increases the number of faces. Fig. 7 illustrates the process for a cube.

Fig. 7

The original vertices have been replaced by equilateral triangles, all of the same size. The size of the
triangles is such that the faces of the original cube have changed from squares to regular octagons. The
new shape has two different sorts of faces and so is not a regular polyhedron.
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Now think about doing the same thing to a regular icosahedron. At each vertex, 5 equilateral triangles
meet The net for one vertex and the new edges are shown in Fig. 8. If the edges AB and AC are joined,
a 3-dimensional shape, either concave or convex according to how you look at it, is formed. A view of
this shape is shown in Fig. 9.

BC
A
Fig. 8 Fig. 9

When the icosahedron is truncated, each of its 12 vertices is replaced by a pentagon, and each
of its 20 faces becomes a hexagon. The shape that is used for footballs is like this, with
20 hexagons and 12 pentagons. However, there is some flexibility in the material that a football is
made of, so when it is inflated the faces bulge a bit and are not quite flat.

Carbon 60 | |

The same structure occurs naturally in the carbon 60 molecule, illustrated in Fig. 10. The molecule Cg,
is one of the most stable known. The work which led to its discovery was done in the last 20 years and
" gained its discoverers, Kroto (then of Sussex University), Curl and Smalley, the 1996 Nobel prize for
Chemistry.

Fig. 10
Geodesic domes

The football and the Cg, molecule are examples of a geodesic structure. The key feature is that all its
‘ vertices lie on a sphere. (The word “geodesic” means “following the surface of the earth”.)

Geodesic structures are strong, as evidenced by the stability of the Ceo molecule, and so are used by
civil engineers in the design of domes. The edges of these domes are made of straight rigid rods and a
suitable material, for example glass, is used for the faces. The design of geodesic domes was pioneered
by Richard Buckminster Fuller and in his honour C, has been named buckminsterfullerine.
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There are different types of geodesic domes. One of the most commonly used is based on the same
structure of pentagons and hexagons as the football. Because only three faces meet at each vertex, the
number of rods used in the construction of such a dome is small, and so the structure can be relatively

light.

However, engineers often create more faces by using designs based on patterns like that illustrated in
Fig. 11. This new pattern has more hexagons, but the number of pentagons remains fixed at 12, one at
each vertex of the original icosahedron.-

Fig. 11
Notice that all the vertices in the resulting geodesic dome must lie on a sphere. To achieve this, many
of the new vertices (e.g. P and Q) have to be moved short distances outwards, each along a radius. As
a consequence, some of the hexagons on the surface of the dome are not quite regular.

Patterns like that in Fig. 11 can be drawn with more (and smaller) hexagons. So a geodesic structure
can be constructed with as many hexagons as required, but there will still be just 12 pentagons.

Fig. 12 shows this type of dome in use at the Eden Project in Cornwall.

Fig. 12
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Explain why it is not possible to construct a regular polyhedron whose faces are regular
octagons.

...................................................................................................................................................

...................................................................................................................................................

Euler’s Law states that E = F + V — 2, where E is the number of edges on a polyhedron,
F the number of faces and V the number of vertices. Show that the regular octahedron

illustrated in Fig. 6 obeys this law.

...................................................................................................................................................

A distant planet is threatened with global cooling. In order to preserve heat, the inhabitants
build a vast geodesic dome, of the general type described on page 6, around the planet. It
consists of 2999 990 hexagons and some pentagons. How many pentagons are there?
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3 For

Examiner's
4  The diagram shows the front elevation of the truncated cube in Fig. 7. It is a regular octagon. vee
The original cube had edges of length a. Show that the length marked x is given by
x=a(2z-1.
/ X \
a
\ / r

5 Aregular tetrahedron is truncated. The new faces are all regular polygons. What shapes are
these polygons and how many of each are there.
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6 Adifferent type of geodesic structure, also based on the icosahedron, involves replacing each
of the original faces by 4 smaller triangular faces, as shown below.

Find how many faces, edges and vertices the complete structure made this way would have.

---------------------------------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------------------------------------------------

...................................................................................................................................................

---------------------------------------------------------------------------------------------------------------------------------------------------

...................................................................................................................................................

O

For

Examiner's
Use

Copyright Acknowledgements:

Insert, Fig. 12 © photograph of Eden Project domes.
Reproduced by kind permission of Apex Photo Agency.
WWWw.apexnewspix.com
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Section A

x+4 4 B
1(a GtDx—2)  x+1 t o M1 Correct partial fractions s.o.i.
= x+4= A(x—2)+Bx+1) N =1
x=-1=3=-34 =>4=-1 B=2
x=2=>6=3B = B=2.
[3]
Ml Any three of the binomial coefficients
1+ 2x)*= -
() ( 1) 1 o 1+1()+ (1/2)(1/2 1)()2+
1+5(2 +———;'(_5)(2 )? +——~——-——-—?(—E)(—;) (2x)*+ 2 v
> (2x) o x 31 (1/2)(1/2—1)(1/2—2)( y...
= 1+x—%x2 +%x3+... 123
Al Correct expansion unsimplified
Alcao. Correct series

3]

(c) 4sinxcosx=2sin2x=1

) 1 Ml use of double angle formula
= sin2x=
2
- T 5w :
=>2x=—,—7 M
6 6 solving for 2x % or 0.524
T Sr
= —,—— Accept 0.26, 1.31. Al
=>x 1212 ccep CAalo
Allow unsupported answers B2 ,B2 [4] For 15°, 75° give Al, for both.
or B1,Bl in degrees.
(d) sin’x = sin x sin’x
= sin x(1 — cos’x)
= sin x — sin x cos’x * El Generously applied
d .
;(COSJ x) = -3sinxcos’ x M1 Chain rule, 3cos’x or 3u’ x an attempt
to differentiate cos x., or any other
Al correct method. A1 for any correct
. 3 . . ) result
jsm xdx = j(smx —sinxcos” x)dx
= jsin xdx — jsinxcosz xdx
B1 Bl 3 .
—cos x , 1/3 cos’x, condone omission

[5] of ¢
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= —cosx + gcos3 x+c¢
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2 (i) BAC =360 — 90 — 120 — (90 - 6)

El
= 0+ 60° *
AE=1.sin 6=sin & Mi AE =sin 6 or BC =2 sin(6+ 60) soi
BC =2 sin(6+ 60) El AE + BC . Some justification must
and 4 = sin @+ 2sin(8+ 60) * (3] be seen.
(ii) & = sin @+ 2sin(f+ 60)
= sin @+ 2(sinfcos60 + cosHsin60) | Ml Expanding sin(# + 60) correctly
. » B
=sin @+ 2(7sind+ 5 cosd) Al 2 sinf+ -Jzicosé? Must be exact form
=2 sin 6+V3 cos@ * El Accept working backwards using
Rcos (0 + o) method
h=0 = 2 sin 8+V3 cosd=0 Mi
= 2 sin = —V3 cosf Al For 2 tan 8 = —V3 or equivalent.
= tan 6 =—3/2 (Or after the first part of (iii)
=> 6 = — 41° or better — not in radians. | Al h=0 when V7sin(6 +40.89°) = 0 M1
[6] 0 +40.89° =0 Al
=—41° Al)
(i) 2 sin 6+V3 cos@= R sin(f+ a) Bl R=17
= R(sin O cos a+ cos Osin ) Ml For the correct identity- implied by
= Rcos @=2, Rsin a=3 Rcos @=2, Rsin a=+3
:>R2=22+(\/3)2=7,R=‘/7 Bl or tan = V3/2
tan a=3/2, a=40.89° Accept 40.9° or better
so h =7 sin (8 + 40.89°)
b =7 Blft f.t. their R
\7 sin (+ 40.89°) = 2.5 Ml 3‘7“0,W g‘f‘gi lffr_ ysan
= sin (O+ 40.89°) = 2.5~/7 _ Sm}g 11%) =2.5 after error
= 6+40.89 =70.89 (or 109.11) Al cao | eavove.

= & =30° (or 68°)
Allow unsupported answer B2

(6]

One angle only required
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3(a) | xe* dx = xe¥ — & Ml Integrating by parts u=x, v = eX.
e)’g)i=—xex = Ie’dy = — _[xe"dx M1 ‘
dx Separating variables
d
=>d= — J'x;(e’)dx
= xe¥+ [endx
=—x e¥ + e* + ¢ condone omission
=—xeX+eX+c Al of ¢
whenx=0,y=0,=21=1+c¢,c=0 Ml evaluating ¢
=>eV= xer+teX=eX1-x) Ml
= y = In(eX(1 — x)) Factorising their solution to the DE
= In(e¥) + In(1 — x) This step must and taking Ins. If the M1 for finding
=x +In(1 - x) be seen for E1 El c comes after this M1 it becomes
DM1
[6]
(b)) X +eV=2 Differentiating implicitly
= x+ey‘")‘}‘==0 M e’+e"—y—
T dx
:eyzx_y=_ex (O;ey=2—f‘ =y =In(2-¢e*)
4 2 ¢ — M1 chainrule
= P o Xy =—exy * El dx  2-e
dx 2 1
@ = T(-ex) (must be seen) = -e*V
e
El)
(ii) x=In(l1+¢) ,y=In(l -9
eX=1+t.eV=1—1 Ml Anti-logging, either result seen.
SeX+eV=1+¢t+1—-t=2 * El (Or after above t=e¥-1=
(2) y=In(2—-eX)
oeV=2—eX =eXteV=2)
1 dy/dt . . dy
S bstitution in their —
d _ 1+¢ M1 orsu
(iif) ay _ _1-t _ dx/dt' dx
dx 1 1-1¢ from (i). Al for any correct
1+¢ : dy .
dy * 1+1 Al expression for d—i(m terms of ¢)
— =-2when ~——— =~
dx 1—¢ Ml Equating their dy/dx to -2
=>1+t=2-2t and attempt to solve.
=3=1,t=1/3
x=1In (4/3) ,y=1n(2/3) Alft t=1/3 allow fit. for ¢t =—1/3, 3,or-3
Alcao (5) | x=1In(4/3) and y =In(2/3)
[Total 9]
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4@ AC'=0+(0-2+(1-3y'=8 Ml Method of finding the ( length )of a
Al side or finding an angle of the
or cos ABC=4+0+0 = ABC =60° triangle
V8 V8 One angle or (side)’ correct
El
A sufficient number of results to
(3] prove the result
() AD=-i-j,AB =-2i+2k, AC =2j+2k M1 Substituting components into
—i _j = l(—zi + 2k) + :u‘(zj + 2k) - - -
— 1=-21=A=1/2 N AD=A1AB +puAC
~1=2u = pu=-1/2 A A=1/2
1 1 1 H= ~1/2
0=21+2u=2. 5+ 2.(—5) correct El (Or showing that any of AB,AC,AD
A, B, C and D are coplanar Bl is dependent on the other two. M1
b4 b4 5 El)
[5]
(iif) n. AB =(i-j+k).(-2i+2k) B1 Both scalar products = 0
=-2+0+2=0
n. AC =(i-j+k).(2j+2Kk) Bl At least one evaluation seen
=0-2+2=0
so n is perpendicular to the plane
Equation of the plane is n.r =n.a Bl x—y+z=...(0r Ml Al for other
= (i—j+k).( xi+yj+zk) = (i-j+K).(3i+Kk) Bl =4 acceptable methods
s x—ytz=3+1-4 (4] eg forming a vector equation and
eliminating the parameters M! Result
A
(iv) AB =—2i+2k, DC =i+3j+2k
ABDC  -2+0+4
cos O =r5T57 = JsA1a 0.189 M1 Correct use of the formula.
'A-B’ DCl Alft Correct substitution of their vectors.
— g =79°. Alcao Accept 79° or 101°or better.
[3] Accept 1.38 or 1.76 radians or better.
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Report on the Units taken — June 2002

2603 Pure Mathematics 3

General Comments

There was a very good response to this paper with some 15 to 20 per cent of candidates scoring marks in the range 60
to 75 and only about 6 or 7 per cent scoring 15 or fewer marks. Between these extremes there was a very good spread

of marks.

The new format of question 1 proved to be a help to all candidates giving even the weaker candidates an encouraging
start; the majority of candidates were able to achieve full marks on the partial fractions question and the binomial

series.

There were parts of other questions which most candidates found accessible: expanding sin(8 + 60), expressing

2sing + «/3_ cos@ in the form R sin (8 + a), integration by parts, finding a gradient in parametric form, finding the
lengths of vectors, the angle between two directions, all attracted full marks for a very large number of candidates.

There were also parts of questions which differentiated well between candidates: de-cos3x, _[sin3xdx, the particular

integral of the differential equation, and the complete proof that the vector AD is lincarly dependent on the vectors AB
and AC in the vector question, were generally only answered correctly by the more able candidates.

Section B also attracted a full range of marks with some parts answered well by almost all candidates and others which
only a minority of candidates were able to complete correctly. There appeared to be little correlation between the marks

in the two sections.

There were, perhaps, more presentable scripts than in previous years but the work of some candidates was very untidy,
poorly written and generally difficult to interpret.

Comments on Individual Questions
Q.1 (a) The correct partial fractions were found by almost all candidates.

(b) Most candidates obtained the correct binomial expansion. Occasional errors included 2x? instead of (2x)? and

an error in the sign of the term -é—xz.

(c) A pleasing number of candidates changed 4sinx cosx to 2sin2x and proceeded to the first solution, but
4sinx cosx = sindx was not uncommon. Most candidates using the correct method failed to find the second

solution for 2x and gave 111—2” instead of —flzr— as the second solution for x.

(d) Too many candidates used the formulae sin’g = %(1—0082@ and cos’@ = -;—(1+cos2® in this question
leading to longer solutions than necessary and a greater possibility of errors. Perhaps the first part prompted
some candidates to express cos’x as cosx — cosx sin’x and then to differentiate using the product formula. These
candidates seemed prepared to use the chain rule to differentiate sin’ having avoided using it to differentiate
cos’x directly.

1

-1, 2 . lo2, . 5 :
@ T57+757 (b)1+X-x7‘+x7+m, © 1—’;—,-1-'—’-; (d)—3cos2xs1nx,—cosx+§-cos3x+c.

Q.2 (i) and (ii) The first three results here were given, and so full justification was required to obtain full marks. A
very clear diagram was acceptable for angle BAC = 8+ 60°, but some justification of the expressions for AE and
BC was required for A. Direct solutions of the equation 2sind +¥3cos8 = 0 were reasonably common, although

tand =i23_- was a frequent error. Other candidates anticipated part (iii) to obtain \ﬁ sin(8 + 40.89°) = 0 and

hence the solution.

(iii) Not all candidates wrote down the identity 2sind +«/3_ cos@ = R(sind cosa + cosd sina) but attempted the

equation Rcosa = 2, or etc., from memory. The occasional error Rcosa =«/3_ was, therefore, almost inevitable.
Otherwise this part was very well done and a good number of candidates went on to solve the equation & = 2.5
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Q4

correctly. Not so many obtained the maximum value of 4, and some gave the angle for which the maximum
occurred but not its value. Candidates were not always aware of the range given for 6 and solutions to # = 0 and
h = 2.5 were sometimes outside this range, or given in radians.

(ii) —41°, (iii) +/7 sin(® + 40.89°), 47, 30° or 68°.

This was, perhaps, the question where the weaker candidates had the most trouble, but even they were usually
confident in integrating by parts and if they were also able to separate the variables correctly, the first marks
were usually secured. Those candidates who also remembered to include a constant of integration in their
solution, and find its value at this stage, most often did so correctly. Many candidates, however, were unable to
carry out the next stage of taking logarithms, the rules of logs are still not fully understood by many candidates
and ¢’ = —xe* + ¢* + ¢ often became y = In(—xe”) + x + Inc., or similarly without the constants. Other candidates
who wrote, correctly, y = In(x—xe”), attempted to introduce the constant at this stage. Because the result was
given it was essential that the steps ¢’ = €°(1—x) and y = In €* + In(1~x) were shown, in order to obtain full
marks. Many candidates failed to do this.

. . . d d .
(b)(i) Notation caused problems for some candidates in this question, 3y= e"+e’ Ey was sometimes followed

. d . .
by the correct result, but in other cases the surplus 3% at the front was taken into the equation. In many such

solutions it was not clear whether the candidate had purposefully differentiated the 2 to 0 or not. If = 0 appeared
at the end of the above line the first % was condoned. Candidates needed to show the intermediate line

T eF . d .
F b £ _ to obtain full marks. An occasional error was Ex}i =—¢' - =",
X &’

(ii) The better candidates had little difficulty in deriving €* and €” in terms of ¢ but weaker ones often did not
know how to proceed. In(1 + ) = Inl + In# was not uncommon.

(iii) This part was better done than the previous two parts, most candidates knowing how to obtain % in terms
of the parameter ¢. Unfortunately a very common error was to omit the —ve sign when differentiating In(1 - 7).
Another error was to misread the given gradient as +2. A small number of candidates obtained the expression for

% very neatly by using the result in part (ii). Very few candidates who made sign errors in this question

seemed aware that the logarithm of a negative number is not defined.
. x o dy —\1+¢ 4
(i) xe—e5 (i) %=_$_‘,—)’ x=in(%), y=1n(2).

Parts (i) and (iv) were well done by very many candidates who were able to apply the formulae for the length of
a vector and the angle between two vectors. There were sometimes errors in the senses of vectors and
occasionally candidates failed to give sufficient proof that the triangle ABC was equilateral.

The more able candidates had little difficulty with part (ii), substituting the appropriate components and finding
the values of A and p. However some of these candidates omitted to check that their values also satisfied the
equation 0 = 2A + 2. Not all the candidates who proved that AD = AAB + pAC were able to state that this
implied that A,B,C and D were coplanar but some candidates who failed to prove the result, did state the
conclusion. Answers such as ABCD is a parallelogram, a square, a pyramid or a kite, were not uncommon.

A very common error in part (iii) was to show only one of the required n.AB=0, n.AC=0 or n.AD=0 instead of
two, but many candidates then obtained the correct Cartesian equation of the plane. Those candidates who
preferred to use the vector equation of the plane and eliminate the parameters to find the Cartesian equation,
were not disadvantaged in this question; the elimination was quite simple and having obtained the equation in
this way candidates were able to show that the normal to the plane was the vector n = i —j + Kk, thus answering
the first part of the question.

(i) A=1/2, u=-1/2, AB,C,D are coplanar; (iii) x —y +z=4; (iv) 79°.
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Section B Comprehension

1.

Very many candidates answered this question by quoting from page 3 of the text, “Regular polygons with more
than six sides have internal angles greater than 120° and so when three or more of them meet at a point there is
an overlap rather than a gap.” Rather more justification than this was required for the second of two marks
available, namely the actual value of the internal angle.

Again some explanation was needed rather than just 12 =8 + 6 — 2, e.g. V=6, F = 8§, and E = 12. Many
candidates did not identify these numbers.

Very often correct.

Solutions to this question were often lengthy and confused. Many candidates made matters worse by attempting
to work back from the answer at some stage in their solution. A common error was to take the sides of the
isosceles right-angled triangle to be 1, 1 and 2 , instead of lengths in the ratio 1: 1: JE . Only a few able

candidates were able to rationalise the result x = —%— |
(Jf + 1)

Not many candidates were able to visualise the truncated tetrahedron and the correct combination of triangles
and hexagons was not stated very often

Many candidates were able to state the correct number of faces but the numbers of vertices and edges were
obtained correctly by relatively few. Very few candidates thought to use Euler’s Law to obtain one result from
the other two, or to check their results found in other ways.

(3) 12; (5) 4 triangles and 4 hexagons;  (6) F=80, E=120, V=42,
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